Nonabelian Jacobian of Projective Surfaces : Geometry and Representation Theory

Printed Book
Sold as: EACH
SR 64 Per Month /4 months
Author: Reider, Igor
Date of Publication: 2013
Book classification: Science & Mathematics, English Books,
No. of pages: 226 Pages
Format: Paperback

This book is printed on demand and is non-refundable after purchase

    Or

    About this Product

    The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its classical counterpart, our nonabelian Jacobian relates to vector bundles (of rank 2) on a surface as well as its Hilbert scheme of points. But it also comes equipped with the variation of Hodge-like structures, which produces a sheaf of reductive Lie algebras naturally attached to our Jacobian. This constitutes a nonabelian analogue of the (abelian) Lie algebra structure of the classical Jacobian. This feature naturally relates geometry of surfaces with the representation theory of reductive Lie algebras/groups. This works main focus is on providing an in-depth study of various aspects of this relation. It presents a substantial body of evidence that the sheaf of Lie algebras on the nonabelian Jacobian is an efficient tool for using the representation theory to systematically address various algebro-geometric problems. It also shows how to construct new invariants of representation theoretic origin on smooth projective surfaces.
    Show more

    Customer Reviews