visualize and extract insights from structured and unstructured data
This book is printed on demand and is non-refundable after purchase
Available Formats :
Printed Book
It will be sent to your address
Extract valuable insights from data by leveraging various analysis and visualization techniques with this comprehensive guide
Purchase of the print or Kindle book includes a free PDF eBook
Key Features:
Book Description:
Exploratory data analysis (EDA) is a crucial step in data analysis and machine learning projects as it helps in uncovering relationships and patterns and provides insights into structured and unstructured datasets. With various techniques and libraries available for performing EDA, choosing the right approach can sometimes be challenging. This hands-on guide provides you with practical steps and ready-to-use code for conducting exploratory analysis on tabular, time series, and textual data.
The book begins by focusing on preliminary recipes such as summary statistics, data preparation, and data visualization libraries. As you advance, youll discover how to implement univariate, bivariate, and multivariate analyses on tabular data. Throughout the chapters, youll become well versed in popular Python visualization and data manipulation libraries such as seaborn and pandas.
By the end of this book, you will have mastered the various EDA techniques and implemented them efficiently on structured and unstructured data.
What You Will Learn:
Who this book is for:
If you are a data analyst interested in the practical application of exploratory data analysis in Python, then this book is for you. This book will also benefit data scientists, researchers, and statisticians who are looking for hands-on instructions on how to apply EDA techniques using Python libraries. Basic knowledge of Python programming and a basic understanding of fundamental statistical concepts is a prerequisite.